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Confining potential in momentum space
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A method is presented for the solution in momentum space of the bound-state problem with a linear potential in r space.
The potential is unbounded at large r leading to a singularity at small ¢. The singularity is integrable, when regulated by
exponentially screening the r-space potential, and is rernoved by a subtraction technique. The limit of zero screening is taken
analytically, and the numerical solution of the subtracted integral equation gives eigenvalues and wave functions in good

agreement with position space calculauons.

On présente une méthode pour la résolution dans I'espace des impulsions du probléme des états liés, avec un potentiel
linéaire dans I'espace r. Ce potentiel n’étant pas borné pour les grandes valeurs de s, on a une singularité pour les faibles
valeurs de ¢. Ce potentiel est intégrable et peut &tre enlevé par une technique de soustraction, si on ajoute un écran exponentiel

au potentiel dans I'espace r. La limite d'écran 2éro est prise

analytiquement, et la solution numérique de I'équation intégrale

soustraite donne des valeurs propres et des fonctions d'onde qui sont en bon accord avec les calculs effectués dans I'espace
des positions. La méthode peut facilement dtre généralisée pour des potentiels variant selon une loi de puissance arbitraire.
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Lattice gauge calculations (1) for static (heavy) quarks sup-
port the notion that the interquark potential in quantum chro-
modynamics (QCD) behaves as V (r) ~ A for large r. Indeed,
the linear potential has long been used in phenomenological
nonrelativistic quark models of baryons and mesons (2, 3).
Meson spectroscopy in particular is successfully described by
a linear potential at large r, modified by spin- and colour-
dependent Coulomb forces at small 7. Most calculations with
the linear potential are carried out in coordinate space. This is
the simplest procedure for heavy-quark systems, which can per-
haps be considered as nonrelativistic; however for light-quark
systems it would be desirable to have a relativistic treatment.
Bound-state equations in relativistic systems (4) are generally
much easier to solve in momentum space, and thus we are led
to comsider, as a starting point for the relativistic case, the
Schrédinger equation for two scalar particles interacting by a
linear poteatial. The methods developed will generalize rela-
tively straightforwardly to relativistic treatments.

To summarize: here, we treat the Schrodinger equation for
a linear r-space potential. The method is for the most pact
straightforward, the only difficulty arising from the singularity
of the kernel at the origin of momentum space. Previous teat-
ments (S) have usually been approximate in the sense that the
singularity was handled by screening the r-space pontendal:

(11 V() ~xe™™

What has perhaps not been generally appreciated is that the
limit 1 — O can be taken analytically. Previous eatments keep
the parameter 7 finite, leading to some uncertainty as to the
nature of the calculated eigenvalues and wave functions. In this
connection, recall that the screened linear potential does not,
strictly speaking, possess true bound states, instead it has scat-
tering resonances, which for low energy approximate the bound

(Traduit par la rédaction]

states of the unscreened potential. We will extract the limit of
zero screening analytically, using a subtraction technique. The
resulting subtracted integral equation is relatively easy to han-
dle numerically. An alternative procedure, ot employing any
subtraction, and leading to a different integrodifferential equa-
tion is presented in ref. 6. Our approach is easy to implement
and generalizes without difficulty to higher partial waves. The
Schrodinger equation for the ith partial wave is (with the
inhomogeneous term already omitted, as it will not contribute
to the bound states in the limit of zero screening)

2
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Here p = m,m/(m, + m,) is the reduced mass and V,, giver
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is the /th partial-wave component of the Fourier transform o
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Q(y) and Q7(y) are the first and second derivatives (with
respect to y) of the Legendre function of the second kind. To
illustrate the method we specialize to s-waves, where we find
by contour integration

2
(6 I Vip.p')p'tdp' = % f dp’ [Qé(y) + %QS(Y)]
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Note that when n = 0, Q/(y) and Q;(») have double and
quadruple poles, respectively, atp' = p, so that their integrals
do not exist separately. Nevertheless, the two terms added
together produce a function with an integrable singularity. This
is illustrated in Fig. 1, which shows the kernel as a function of
p’ for fixed p. One observes that there is a central maximum
atp’ = p with height scaling as 1/n?, flanked by two minima
atp’ ~ p = 2n whose heights also scale with 1/mf. The integral
vanishes [6] and this allows us to rewrite the Schrodinger equa-
tion in subtracted form

2 A [ Xy . . Q;(y)]
[7] 2“. ¢0(P) + r f (ppn)z + n (ppr)l

X [&op") = bo(p)) p"? dp" = Edy(p)

The limitn — 0 now exists, and may be extracted by splitting
the region of integration to isolate the singularity. We write

2
& |4 [Qé(,v) + Qz(y)] [66(p") = So(P)]

=M p+rén
= + +
0 p=4m p+4am

=A+B+C

The limits p = 47 are chosen so that all three extrema of the
kernel lie in the middle region B. The explicit forms of the
Legendre functions are
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FiG. 1. The singularity structure of the kernel is shown for finite
7 = 0.075 with fixedp = 2.
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It is clear that for p’ # p, as is the case in the integrals A and
C, the limit n — 0 is innocuous, and may be taken immediately,
indeed one has

9] lim [A + (]

0
® [] - 4p2p'2 ’

P L dp [(p" - Py (do(p") = bo(P))
where P denotes as usual, the Cauchy principal value of the
integral, which has been made well defined by the subtraction.
The term B must be handled with care, however, since p’ = p
inside the region of integration. Assuming &(p’) is analytic in
the neighborhood of p, and making an obvious change of
variable we find
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Scaling out 47 then results in
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TasLE 1. Energy eigenvalues in GeVfor ! = O, m, = m, = 1.5 GeV, and A = S GeV?

N

8 10 12 14 16 18 Exact
E, 5973 5.972 5972 5.972 5.972 5.972 5971
E, 10.468 10.444 10.443 10.443 10.443 10.443 10.441
E, 14.389 14.114 14.111 14.104 14.104 14.104 14.101
E, 18.646 17.452 17.378 17.34] 17.33§ 17.335 17.335
E, 23.402 21.128 20.397 20.351 20.2%4 20.293 20.291
E, 27.206 25.683 23.440 23.281 23.072 23.053 23.046
E, 33.032 31.269 27.274 26.059 25.842 25.648 25.646
E, 44.374 36.224 32113 29.032 28.789 27.947 28.119
E, 40.519 38.146 33.051 31.561 30.194 30.488
E, 51.774 45.309 38.067 34.428 33.340 32.769
E, 49.940 44,286 38.517 36.489 3a9M2
E 58.588 51.893 43.615 37.309 37.109

~

The contribution of the second term in B1 clearly vanishes since it is not singular at p’ = p, the analysis of B2 is similar, and we
conclude that B tends to zero. Therefore the limiting form of the equation is

2’2

2 . J" | _arp . _
(12) 2“¢0(P) ‘n’sz o dp[(p-z_ pz)z] [dy(p) do(P)] = Edy(p)

We now discuss the numerical solution of [12], which is not yet a completely trivial matter, since care must be taken to obtain
the Cauchy principal value. In this respect there is a difference between the linear potential and the Coulomb potential, the latter
giving rise to a logarithmic singularity. For the Coulomb potential, the method used in the literature (7) is to write the Coulomb
analog of {12 directly, for example, using Gaussian quadrature, as a matrix equation. Since the singularity is only logarithmic
this method is successful for the Coulomb potential. Here, such an approach is not feasible. Instead, we expand ¢, in a suitable
set of basis functions

N
[13] &o(p) =2 Ca.ip)

Inserting this expansion in [12], multiplying by p’g,.(p) and integrating over p, we obtain

¢ A 4pp”
(14) 2 CU ;—us.(p)s.(p)dp * 3 I[(P—'zpf—pz')'z] 8-(PeP) - &PIdp'dp =E ¥ C, f P'8a(P)8.(p) dp

which is just the matrix equation

s] 3 A.C.=E 2 G.C.

The double integral over p and p’ is performed by changing to integrand
variables (p’ + p) and (p’ — p). The singulanity is in the
integral over (p’ — p). so this is carried out first using Gaussian
quadrature with an even number of points. This type of inte-
gration yields the Cauchy principal value automatically (8). A
convenient set of functions g(p) is

1
(16] gu(p) (nz/N)z + p‘
where N is the maximum number of functions used in expansion
[13]. Figure 2 is a 3D plot of the kernel of [14], showing clearly
the cancellation that leads to the principal value. Using the
above method, we have calculated both eigenvalues and eigen- FiG. 2. A three-dimensiosal figure of the subtracted, regulated inte-
vectors. In Table 1 the first 12 eigenvalues are listed. We used grand; n = 0.075. The cancellation that produces the Cauchy prin-
m, = m, = 1.5 GeV and the string tension A\ = 5 GeV2. One  ciple value is evident.
can see that the lower eigeavalues converge nicely as the num-
ber of functions is increased. We compare these with the eigen- the logarithmic derivatives at the classical turning point), in
values obtained from a coordinate space calculation (integrating ~ Table 1. The calculated eigenfunctions also agree with the
the equation out from 7 = 0 and in from large r, and matching ~ coordinate-space calculation.
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In conclusion, we have treated the problem of two nonrela-
tivistic, scalar particles interacting via a linear potential in
momentum space. The relevant Schrédinger equation has a sin-
gular kernel. We have shown how after regulating the singu-
larity by exponentially screening the r-space potential, the
severity of the singularity can be reduced by a suitable sub-
traction, and the limit of zero screening extracted analytically.
To the best of our knowledge, this point has not been generally
understood in the literature. The limiting form of the equation
has been treated numerically, and the results are in good agree-
ment with more straightforward coordinate space calculations.
Relativistic equations involving linear potentials involve sim-
ilar singularities, so that the methods developed here will be
applicable. We intend to study the relativistic quark-antiquark
problem in the future. The method presented here can be
generalized to higher partial waves without undue difficulty.
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An optical potential abrasion-ablation collision model is used to calculate hadronic dissociation
cross sections for one, two, and three nucleon removal for the first time for a 14.64 GeV Sj
beam fragmenting in aluminum, tin, and lead targets. These estimates are compared with recent
semi-inclusive measurements. Significant differences between some calculated and measured
semi-inclusive cross sections exist which cannot be resolved without measurements of the exclusive
channel hadronic cross sections. Calculations for each exclusive reaction channel contributing to
the semi-inclusive cross sections are presented and discussed.

- Recently, the E814 Collaboration at Brookhaven Na-
tional Laboratory (BNL) made a very detailed experi-
mental study of the breakup of silicon beams at relativistic
energies (Ejp=14.64 GeV or Tiay=13.74 GeV) using
the Alternating-Gradient Synchrotron.! They reported
cross-section measurements of one, two, and three nucleon
removal by aluminum, tin, and lead targets from both
electromagnetic and hadronic dissociation processes. For
the electromagnetic dissociation (EMD) process, mea-
surements of individual exclusive channel contributions
were reported. Comparisons of measurements for 1p and
In removal with calculated values obtained using the
Weizsacker-Williams method of virtual quanta? were
made, and good agreement was obtained. More recently,
Llope and Braun-Munzinger? extended the EMD analysis
to include multiple excitations of the giant dipole reso-
nance coupled with fragmentation probabilities obtained
from the standard statistical model of nuclear decay.
They then use this extended calculational framework to
predict exclusive EMD cross sections for many of the
channels measured by the E814 Collaboration.

For the measured hadronic dissociation channels, how-
ever, no detailed analyses have been reported. In Ref. 1,
simple comparisons between semi-inclusive measurements
and a recent paramctrization‘ of 1p and 1n geometrical
calculation of single nucleon removal® were made. In this
work, we analyze the hadronic dissociation of silicon pro-

tions. Although no exclusive experimental hadronic cross
sections were reported in Ref. 1 (the only exclusive cross
sections reported were due to EMD), these calculated re-
sults are presented to stimulate interest in their experi-
mental measurement and to facilitate further discussion in
the semi-inclusive cross-section analysis.

The abrasion portion of this formalism was recently
used to successfully describe single nucleon emission in
relativistic nucleus-nucleus collisions.” Predictions of ha-
dronic cross sections for the exclusive reaction channels
measured in Ref. | are presented. Semi-inclusive cross
sections, obtained by summing the appropriate exclusive
channels, are presented and compared with the measured
values reported in Ref. 1. Reasonably good agreement is
obtained for the xp (x =1, 2, 3) channels. However, for
the yn (y =1, 2) channels, the agreement is not as good,
with the calculations generally overestimating the experi-
mental data. Comments concerning the difficulties in
resolving these differences are made, and the need for ex-
clusive measurements of these hadronic cross sections is
pointed out.

In the optical potential formalism,® the abrasion cross
section for removal of m nucleons is

A
a,b,(App)-[’:]fdzb[l—P(b)]'"[P(b)]"". m

jectile nuclei by aluminum, tin, and lead targets using an where
optical potential abrasion-ablation collision model which P(b) =expl— Arole)I(b)], (2)
includes contributions from frictional-spectator interac- i
tions.® This model is used to calculate exclusive cross sec- with
1
1) ={2xB(e)] "fzfdzofd3§rpr(§r)fd’yp,,(b+zo+y+§7—)exp[—y2/28(e)] . 3
43  R2045 Work of the U.S. Government
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In Eqgs. (2) and (3), b is the impact parameter, e is the
two-nucleon kinetic energy in their center-of-mass frame,
zg is the target center-of-mass position in the projectile
rest frame, {7 denotes the target-nucleus internal coordi-
nates, and y is the projectile-nucleon-target-nucleon rela-
tive coordinate. Methods for obtaining the appropriate
nuclear distributions p; (i=P, T) and constituent-
averaged nucleon-nucleon cross sections o(e) are given in
Ref. 8. Values for the diffractive nucleon-nucleon scatter-
ing slope parameter B(e) are obtained from the parame-
trization in Ref. 9. The Pauli correlation correction de-
rived in Ref. 8 is neglected here because it is negligible for
the peripheral collisions® being considered in this work.
Since the abraded nucleons consist of protons and neu-
trons, a prescription for calculating the prefragment
charge dispersion is needed. The three available choices
are completely correlated,'? hypergeometric (completely
uncorrelated),'! and a model based upon the zero-point
vibrations of the giant dipole resonance.'? For the present
work, we have chosen to implement the hypergeometric
model, which assumes that there is no correlation at all
between the neutron and proton distributions. For few
nucleon removal processes, such as are being investigated
here, the calculated results are not particularly sensitive to
any of these particular charge dispersion methods.'® For
example, all three methods yield identical charge disper-
sion results for single nucleon abrasions from self-
conjugate nuclei. If z out of the original Z projectile nu-
cleus protons are abraded along with » out of the original
N projectile neutrons, then the abrasion cross section be-

comes
3] %]
n)l\z
Tabe(Zpf, App) = ————an (Apf) , 4)
Ap
m
where
m=n+z, (5)
Zpg=Z -2 , (6)
APF -AP -m, (7)

and (,:’) denotes the usual binomial coefficient expression
from probability theory. To complete the abrasion por-
tion of the calculation, prefragment excitation energies
E .xc must be estimated. We use

Eexc-E:+EFSIv (3)

where the surface energy term (E,) is calculated using the
usual clean-cut abrasion formalism.'* The frictional-
spectator interaction (FSI) contribution (Efg;) is estimat-
ed using the methods of Ref. 11. To compute the proba-
bility that p FSI's have occurred for each abrasion of m
nucleons, we use an extension of the Benesh, Cook, and
Vary (BCV) prescription for estimating escape probabili-
ties of abraded nucleons rather than the usual assumed
value of one-half.%'! Therefore, the abrasion cross section
for a prefragment of isotopic species (Zpg, 4pg) which has
undergone p FSI's is given by

Oan(Zor, Ape.p) = (71| (1 = Poac) (Poc) ™7
X oanr(ZpF, Apr) , (9
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where P is the BCV probability that an abraded nu-
cleon escapes without undergoing any frictional-spectator
interactions.® For the reactions considered herein,
Pesc =0.7.

Depending upon the excitation energy, the excited
prefragment will decay by emitting one or more nucleons,
composites, or gamma rays. The probability a;;(p) for
formation of a specific final fragment of type i as a result
of the deexcitation of a prefragment of type j which has
undergone p frictional-spectator interactions is obtained
using the EVA-3 computer code.'? For m=1 or 2 and
2 =0 (no FSI), the values of E.,c are less than 3 MeV for
all targets and no particle emission occurs. Hence, the
calculated cross sections for ¥'Si+n, 2%5i+2n, 2"Al+p,
and *Mg+2p arise solely from the abrasion process.
Whenever one or more FSI's (p =1, 2) occur for a frag-
menting silicon nucleus, an additional (average) excita-
tion energy of 31 MeV per FSI (computed using the
methods of Ref. 11) is deposited in the prefragment.
When these resultant excitation energies are used as in-
puts into the EVA-3 code, the cross sections for the
5Mg+2p+n and the BAl+p+2n final states are so
large that all calculated xn or xp (x =1, 2) semi-inclusive
cross sections significantly overestimate the present exper-
imental measurements. In earlier work '’ on a semiempir-
ical fragmentation code which used this same FSI model,
it was noted that improved agreement between calcula-
tions and all available experimental data were obtained if
values of excitation energy were increased above those ob-
tained from the methods of Ref. 11. [n this work, we ob-
served that treating Egs as a free parameter and increas-
ing its value by 15 MeV reduced the cross sections for the
BMg+2p+n and PAl+p+2n channels—thereby
improving the semi-inclusive cross-section predictions.
Therefore, the final hadronic cross section for production
of the type { isotope is given by

mn

Tnuc(Zi,A;) -Z Zoaij(P)O'abr(zj»Ajyp) , (10)
jp= :

where the summation over j accounts for the contributions

to i from different prefragment species j, and the summa-

tion over p accounts for the effects of the different excita-

tion energies resulting from FSI’s.

Estimated exclusive cross sections obtained using the
fragmentation model described herein are separately list-
ed in Table I for each target. To compare our predictions
with the semi-inclusive hadronic cross-section measure-
ments (Fig. 4 of Ref. 1), we sum the exclusive channels
listed in Table I for each of the relevant nucleon emission
reactions. For example, the 1p semi-inclusive calculation
is the sum of the exclusive channel cross sections for the
DAl+p, BAl+p+n, BAl+p+2n, and the 2Al+p+3n
reactions. Similarly, the 1n semi-inclusive calculation is
the sum of the ’Si+n, %Al+p+n, ¥Mg+2p+n, and
“Na+3p+n exclusive channels. The calculated results
for xn (x =1, 2) and yp (y =1, 2, 3) semi-inclusive cross
sections are plotted in Fig. | along with the BNL experi-
mental measurements from Fig. 4 of Ref. 1. Except for
the 1p datum for the lead target, all calculated proton
cross sections are in reasonably good agreement with the
experimental data. Comparing the calculated and experi-
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TABLE 1. Exclusive channel hadronic dissociétion cross- 1000
section calculations.

Cross section (mb) with target nucleus

Channel Aluminum Tin Lead '
YSi+n 99.1 1264 134.4 1 4 :
TAl+p 99.1 126.4 134.4 = 3 4
*Si+2n 17.9 223 239 g }
BAl+p+n- 38.9 48.2 51.7 T 100} $ PR
®Mg+2p 17.9 223 239 o o
BAl+p+2n L5 2.1 2.3 2 ¢ ° *
BMg+2p+n 13.8 20.1 21.8 ° ° 4
BNa+3p 0.3 0.4 0.4 ©
HAl+p+3n 0.1 0.2 0.2 ¢
*Mg+2p+2n 30.7 44.2 47.5
®Na+3p+n 10.2 14.5 15.6 4 ?

10 ‘

mental neutron removal cross sections, however, we note
that the agreement is not as good. There the calculations
systematically overestimate the measurements by nearly
50%. Since the experimental data were not corrected for
detector acceptance limitations, '® the observed trend for
calculated cross sections to generally be larger than mea-
sured ones is expected because the experimental data are
likely to underestimate the actual cross sections by an as
yet unknown amount. Resolution of these discrepancies is
therefore hampered by the lack of exclusive channel mea-
surements and detector acceptance corrections, which
would enable the source(s) of any differences to be pin-
pointed.

For the 1n removal calculations, the main contribution
(nearly half) to these cross sections for each target arises
from the *'Si+n exclusive channel when no FSI occur.
Simple modifications to the current calculation model,
such as using the Rasmussen'' FSI escape probability
(P..=0.5), would reduce the neutron cross-section
differences; however, the calculated proton removal cross
sections would also be reduced, destroying the agreement
that presently exists between theory and experiment. A
potential source for part of the difference between neutron
and proton removal cross sections, not accounted for by
the theory, is the difference in removal threshold energies.
A proton, being less tightly bound, should have a larger
removal cross section than a neutron. To test this hy-
pothesis, we turn to the earlier fragmentation measure-
ment of carbon and oxygen beams by Lindstrom et al.'?
which provide a fairly complete data set. Correcting their
measurements for EMD contributions using Ref. 18, we
find that the exclusive 1p removal channel (“Nor'B
formation) is only 10%-20% larger than the exclusive 12
removal channel ('°0 or ''C). Adding the other 1n and
1p exclusive channels ("*N, PN, '3C, '°C, etc.) to esti-
mate experimental 1n and lp inclusive cross sections
yields much smaller differences between them— unlike the
recent 2%Si measurements' where the lp semi-inclusive
cross sections are substantially larger than the 1n cross

10 100 1000

Target mass number

FIG. 1. Hadronic dissociation cross sections vs target mass
number. The experimental data point symbols include error
bars; the theoretical calculation point symbols do not. 1p is rep-
resented by a solid square, 1a by an open square, 2p by a solid
circle, 2n by an open circle, and 3p by a solid triangle.

sections. From a binding energy point of view, this may
result from the fact that the ''C-''B binding-energy
difference is smaller than that for ¥'Si-’Al. A way to in-
corporate proton-neutron binding-energy differences into
the present model may be to use different nuclear distribu-
tions for the proton and neutron densities. Such efforts
are considered in Refs. 19 and 20. Recent work?':? has
shown how the binding energy is directly influenced by the
nuclear density. In principle, then, one could model the
proton-neutron densities of S to fit the observed
binding-encrgy differences. However, this particular
method is beyond the scope of the present treatment. In-
stead, possible changes to the calculated cross sections, re-
sulting from neutron-proton density differences, were
modeled by reducing the half-density radius of the Bgi
neutron distribution by 0.5 fm. The calculated neutron
cross sections were reduced, as anticipated, but by only a
few millibarns (less than 10 mb for all targets). These
reductions were not large enough to account for the re-
ported differences between measured semi-inclusive pro-
ton and neutron removal channels. Clearly, exclusive
channel experimental measurements for #Si hadronic
cross sections, which are presently being analyzed,'®
would substantially aid efforts to resolve the differences
between calculation and experimental measurements.
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